The Future of Interventional Pain Medicine

Zachary L. McCormick, MD

Vice Chair and Associate Professor, PM&R

Chief, Division of Spine and Musculoskeletal Medicine

Founding Director, Clinical Spine Research Program

Founding Director, Interventional Spine Fellowship

University of Utah School of Medicine

Zachary.McCormick@hsc.Utah.edu @ZackMcCormickMD

Disclosures

- Research Grants: Avanos Medical, Boston Scientific, Relievant Medsystems, SPR Therapeutics, US
 Department of Defense, Foundation of PM&R, National Institutes of Health, Skaggs Research Foundation,
 Spine Intervention Society, University of Utah Cell Therapy and Regenerative Medicine Program
- **Board of Directors**: Spine Intervention Society (SIS), Pacific Spine and Pain Society (PSPS), American Board of Pain Medicine (ABPM)
- **Journal Editorial Boards**: Pain Medicine (Deputy Editor-in-Chief), Physical Medicine & Rehabilitation, The Spine Journal
- Data Monitoring Board: FUSmobile
- Consulting: Saol Therapeutics, SI Bone, Stryker

The Future of Interventional Pain Medicine

- Context: Policy
- Emerging Science and Care Paradigms
- Education and Training
- Professional Societies

Context - Policy

CDC GUIDELINE FOR PRESCRIBING OPIOIDS FOR CHRONIC PAIN

Promoting Patient Care and Safety

THE US OPIOID OVERDOSE EPIDEMIC

The United States is in the midst of an epidemic of prescription opioid overdoses. The amount of opioids prescribed and sold in the US quadrupled since 1999, but the overall amount of pain reported by Americans hasn't changed. This epidemic is devastating American lives, families, and communities.

More than 40 people die every day from overdoses involving prescription opioids. 1

Since 1999, there have been over 165,000 deaths from overdose related to prescription opioids.¹

4.3 million Americans engaged in non-medical use of prescription opioids in the last month.²

Among the 12 recommendations in the Guideline, there are three principles that are especially important to improving patient care and safety:

Nonopioid therapy is preferred for chronic pain outside of active cancer, palliative, and end-of-life care.

When opioids are used, the lowest possible effective dosage should be prescribed to reduce risks of opioid use disorder and overdose.

Clinicians should always exercise caution when prescribing opioids and monitor all patients closely.

DETERMINING WHEN TO INITIATE OR CONTINUE OPIOIDS FOR CHRONIC PAIN

- OPIOIDS ARE NOT FIRST-LINE THERAPY

 Nonpharmacologic therapy and nonopioid pharmacologic therapy
 are preferred for chronic pain. Clinicians should consider opioid
 therapy only if expected benefits for both pain and function are
 anticipated to outweigh risks to the patient. If opioids are used, they
 should be combined with nonpharmacologic therapy and nonopioid
 pharmacologic therapy, as appropriate.
- 2 ESTABLISH GOALS FOR PAIN AND FUNCTION
 Before starting opioid therapy for chronic pain, clinicians should establish treatment goals with all patients, including realistic goals for pain and function, and should consider how opioid therapy will be discontinued if benefits do not outweigh risks. Clinicians should continue opioid therapy only if there is clinically meaningful improvement in pain and function that outweighs risks to patient safety.

Nonpharmacologic therapies and nonopioid medications include:

- Nonopioid medications such as acetaminophen, ibuprofen, or certain medications that are also used for depression or seizures
- Physical treatments (eg, exercise therapy, weight loss)
- Behavioral treatment (eg, CBT)
- Interventional treatments (eg, injections)

DISCUSS RISKS AND BENEFITS

3

Before starting and periodically during opioid therapy, clinicians should discuss with patients known risks and realistic benefits of opioid therapy and patient and clinician responsibilities for managing therapy.

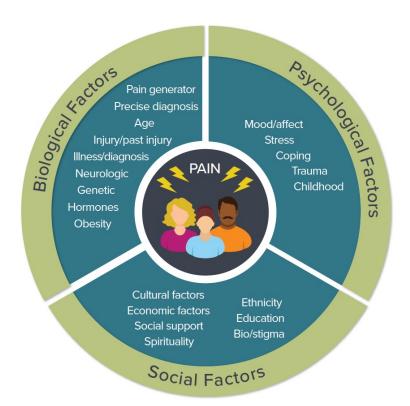
PAIN MANAGEMENT

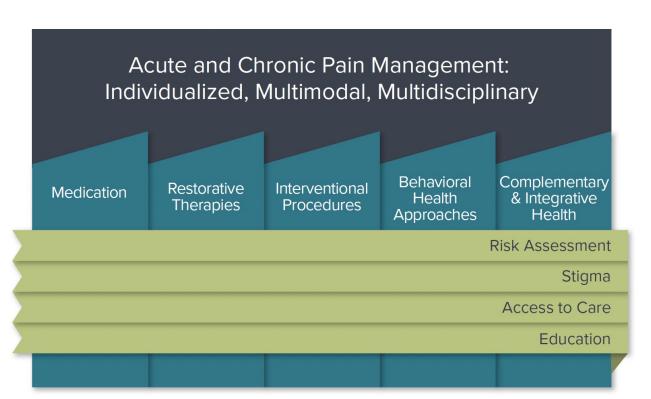
BEST PRACTICES

PAIN MANAGEMENT BEST PRACTICES INTER-AGENCY TASK FORCE REPORT

BEST PRACTICES

PAIN MANAGEMENT BEST PRACTICES INTER-AGENCY TASK FORCE REPORT




Figure 5: The Biopsychosocial Model of Pain Management

BEST PRACTICES

PAIN MANAGEMENT BEST PRACTICES INTER-AGENCY TASK FORCE REPORT

PAIN MANAGEMENT

BEST PRACTICES

PAIN MANAGEMENT BEST PRACTICES INTER-AGENCY TASK FORCE REPORT

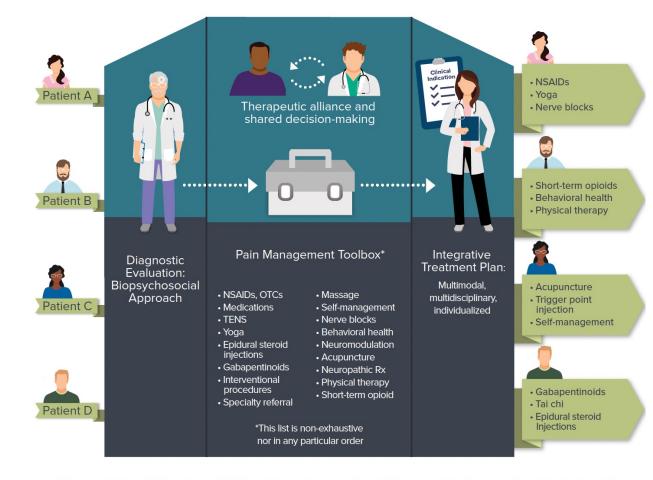


Figure 6: Individualized Patient Care Consists of Diagnostic Evaluation That Results in an Integrative Treatment Plan That Includes All Necessary Treatment Options

MCD

Medicare Coverage Database

138773

Search Reports Downloads

₩0

Archive [☑]

Expand All | Collapse All

SUPERSEDED Local

Local Coverage Determination (LCD)

Facet Joint Interventions for Pain Management

- accessing inter-

SUPERSEDED

To see the currently-in-effect version of this document, go to the <u>Public Versions</u> section.

Contractor Information

LCD Information

Document Information

LCD ID

L38773

LCD Title

Facet Joint Interventions for Pain Management

Proposed LCD in Comment Period

N/A

AMA CPT / ADA CDT / AHA NUBC Copyright Statement

CPT codes, descriptions and other data only are copyright 2021 American Medical Association. All Rights Reserved. Applicable FARS/HHSARS apply.

Fee schedules, relative value units, conversion factors and/or related components are not assigned by the AMA, are not part of CPT, and the AMA is not recommending their use. The AMA does not directly or indirectly practice medicine or dispense medical services. The AMA assumes no liability for data contained or not contained herein.

 $\hbox{\it Current Dental Terminology @ 2021 American Dental Association. All rights reserved.}$

Contents

Contractor Information

LCD Information

Document Information

LCD ID

LCD Title

Proposed LCD in Comment Period

Source Proposed LCD

Original Effective Date

Revision Effective Date

Revision Ending Date

.....

Retirement Date

Notice Period Start Date

Notice Period End Date

CMS National Coverage

Policy

Coverage Guidance

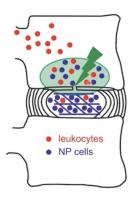
Coverage Indications, Limitations, and/or Medical

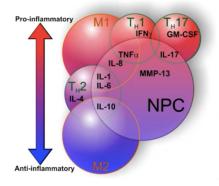
Necessity

Summary of Evidence

Analysis of Evidence

- Facet Steroid Injections
- Time between MBBs and RFA
- Number of levels
- Frequency/treatment episodes per year
- Documentation of assessment using a validated functional outcome measure

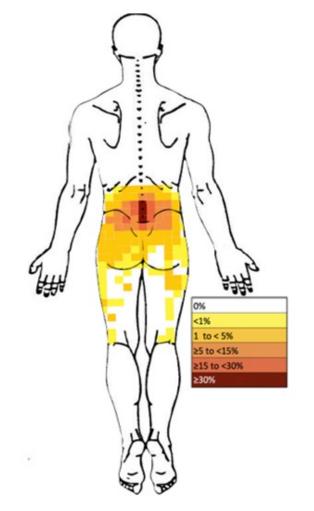

CMS Budget = relatively fixed

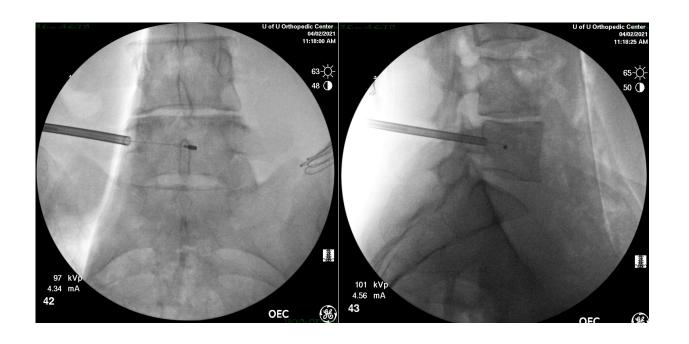

New procedures vs. established procedure reimbursement -> Zero-sum game

Emerging Science and Care Paradigms

Discovertebral Pain

Discovertebral Pain



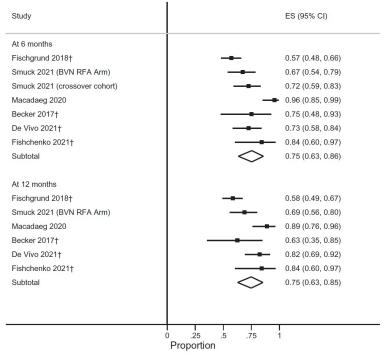

Clinical Phenotype

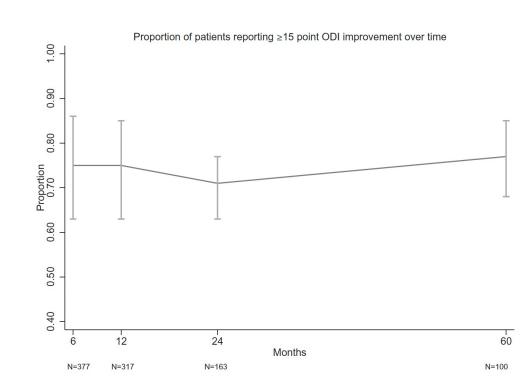
- 1. Chronic axial LBP
- 2. Mid-line predominant, possible gluteal referral
- 3. Worse with activity, not worse with lumbar extension
- 4. Type 1 or 2 Modic Changes
 - DDD grade and Endplate defect characteristics may not be related

Basivertebral Nerve Radiofrequency Ablation

The Effectiveness of Intraosseous Basivertebral Nerve Radiofrequency Ablation for the Treatment of Vertebrogenic Low Back Pain: An Updated Systematic Review with Single-Arm Meta-analysis

Aaron Conger, DO, Taylor R. Burnham (D) DO, MS, Tyler Clark, MD, Masaru Teramoto, PhD, MPH, PStat®, and Zachary L. McCormick (D), MD

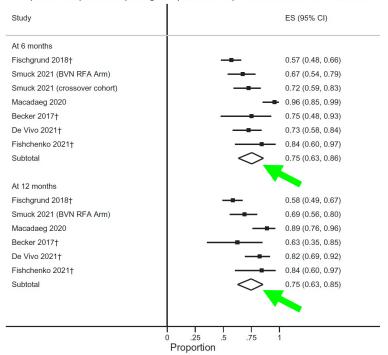


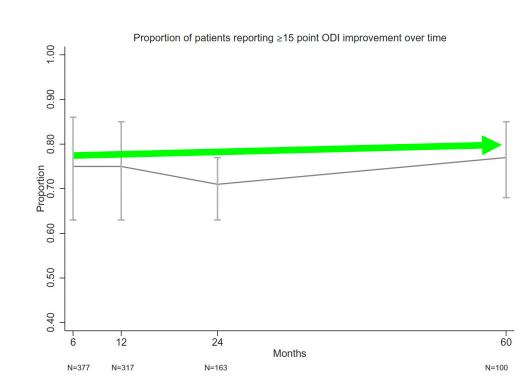

The Effectiveness of Intraosseous Basivertebral Nerve
Radiofrequency Ablation for the Treatment of Vertebrogenic
Low Back Pain: An Updated Systematic Review with Single-Arm
Meta-analysis

Aaron Conger, DO, Taylor R. Burnham (DO, MS, Tyler Clark, MD, Masaru Teramoto, PhD, MPH, PStat®, and Zachary L. McCormick (, MD

Proportions of patients reporting ≥15 point ODI improvement at six and 12 months

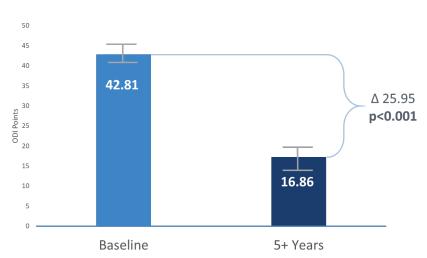
Participants with *Improvement* in ODI of ≥15

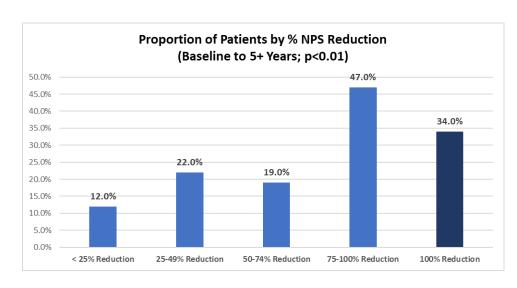



The Effectiveness of Intraosseous Basivertebral Nerve Radiofrequency Ablation for the Treatment of Vertebrogenic Low Back Pain: An Updated Systematic Review with Single-Arm Meta-analysis

Aaron Conger, DO, Taylor R. Burnham (DO, MS, Tyler Clark, MD, Masaru Teramoto, PhD, MPH, PStat®, and Zachary L. McCormick (, MD

Proportions of patients reporting ≥15 point ODI improvement at six and 12 months




Participants with *Improvement* in ODI of ≥15

5-year outcomes

Mean ODI Baseline to 5+ Years – (N=100 US PP)

Opioids: 60% reduction in opioid use at 5 years

<u>Injections:</u> 93% *reduction in injection use* for LBP at 5 years

<u>Post Ablation Procedures:</u> 8% of patients progressed to a fusion (*5/8 at a single study site*)

Future Directions

- Selection in patients with additional spinal pathology? i.e stable spondy, mild to moderate scoliosis, adjacent fusion level, mixed pain
- Interventional selection methods? i.e. discography, discoblock, other?
- Novel imaging biomarker(s)?

Neuromodulation – *expanding indications*

Neuromodulation – *expanding indications*

Pain Medicine, 21(11), 2020, 2699–2712 doi: 10.1093/pm/pnaa142

Advance Access Publication Date: 29 May 2020

Review Article

The Effectiveness of Spinal Cord Stimulation for the Treatment of Axial Low Back Pain: A Systematic Review with Narrative Synthesis

Aaron Conger, DO,* Beau P. Sperry,* Cole W. Cheney, MD,* Taylor M. Burnham, DO,* Mark A. Mahan , MD,† Ligia V. Onofrei, MD,† Daniel M. Cushman, MD,* Graham E. Wagner, MD,* Hank Shipman,§ Masaru Teramoto, PhD, MPH,* and Zachary L. McCormick, MD*

The Effectiveness of Spinal Cord Stimulation for the Treatment of Axial Low Back Pain: A Systematic Review with Narrative Synthesis

Aaron Conger, DO, * Beau P. Sperry, * Cole W. Cheney, MD, * Taylor M. Burnham, DO, * Mark A. Mahan , , MD, * Ligia V. Onofrei, MD, * Daniel M. Cushman, MD, * Graham E. Wagner, MD, * Hank Shipman, * Masaru Teramoto, PhD, MPH, * and Zachary L. McCormick, MD *

Table 1. Study characteristics*

			SCS		Primary Outcome	Secondary Outcome
Author, Year [Ref]	Study Design	Patient Population	Waveform, Hz	Control	Measures	Measures [†]
Brinzeu 2019 [21]	Prospective, single cohort	Back and leg pain	Multiple devices	N/A	NPRS	N/A
Al-Kaisy 2018 [22]	Prospective, single cohort	Predominant axial low back pain	10 kHz	N/A	VAS	ODI
Russo 2018 [23]	Prospective, single cohort	Back and leg pain	Not reported	N/A	VAS	ODI
Veizi 2017 [24]	Open-label prospective vs retrospective analysis	Back and leg pain	Mean 59.8 ± 109.3 Hz	Tonic SCS, frequency not reported	NRS	N/A
Gatzinsky 2017 [25]	Prospective, single cohort	Back and leg pain	Mean $60 \pm 31 \mathrm{Hz}$	N/A	VAS	EQ-5D
Kapural 2016 [‡] [26]	Randomized, controlled	Back and leg pain	10 kHz	SCS $39.2 \pm 15.0 \text{Hz}$	NRS	ODI, PGIC
Kapural 2015 [‡] [27]	Randomized, controlled	Back and leg pain	10 kHz	SCS 39.2 \pm 15.0 Hz	NRS	ODI, PGIC
Al-Kaisy 2014 [28]	Prospective, single cohort	Back and leg pain	10 kHz	N/A	VAS	ODI
Van Buyten 2013 [29]	Prospective, single cohort	Predominant axial low back pain	10 kHz	N/A	VAS	ODI
De Vos 2012 [30]	Prospective, single cohort	Back and leg pain	Not reported	N/A	VAS	N/A

NPRS = numeric pain rating scale; NRS = numeric rating scale; ODI = Oswestry Disability Index; PGIC = patient global impression of change; SCS = spinal

cord stimulation; VAS = visual analog scale.
*Studies reporting categorical data.

[†]As measured by a validated, standardized survey instrument.

[‡]One patient population followed across multiple publications.

The Effectiveness of Spinal Cord Stimulation for the Treatment of Axial Low Back Pain: A Systematic Review with Narrative Synthesis

Aaron Conger, DO,* Beau P. Sperry,* Cole W. Cheney, MD,* Taylor M. Burnham, DO,* Mark A. Mahan (), MD,* Ligia V. Onofrei, MD,* Daniel M. Cushman, MD,* Graham E. Wagner, MD,* Hank Shipman,* Masaru Teramoto, PhD, MPH,* and Zachary L. McCormick, MD*

Conclusions

The published evidence suggests that 10-kHz SCS may be an effective treatment for axial LBP in patients with both refractory axial predominant LBP (very low-quality evidence) and combined axial back and leg pain (very lowto low-quality evidence depending on the comparator), primarily in the FBSS population. There is insufficient evidence to evaluate the long-term effectiveness of burst SCS beyond six months for axial LBP reduction. Traditional low-frequency SCS appears minimally effective for reducing axial LBP pain (very low-quality evidence), though newer low-frequency systems show promise in nonrandomized studies (very low-quality evidence). Investigator-driven, non-industry-funded studies with long-term outcome assessment are needed in this area of clinical research.

Neuromodulation – *expanding indications*

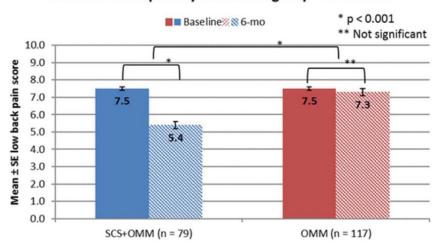
Pain Medicine, 21(11), 2020, 2699–2712 doi: 10.1093/pm/pnaa142 Advance Access Publication Date: 29 May 2020 Review Article

The Effectiveness of Spinal Cord Stimulation for the Treatment of Axial Low Back Pain: A Systematic Review with Narrative Synthesis

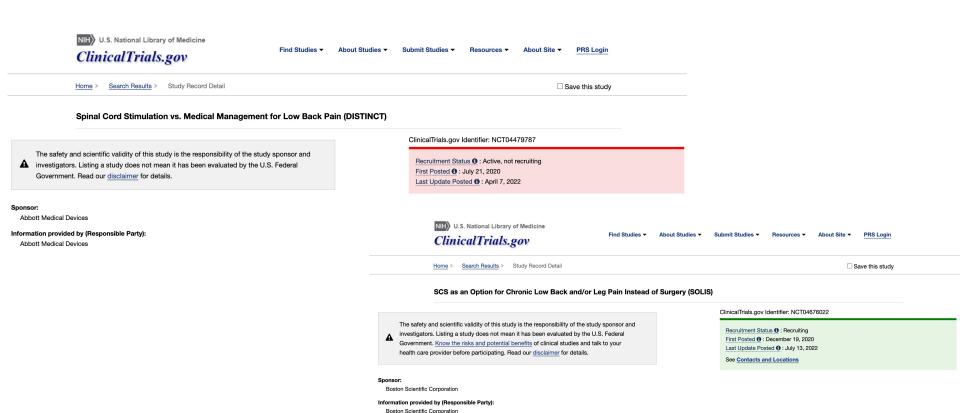
Aaron Conger, DO,* Beau P. Sperry,* Cole W. Cheney, MD,* Taylor M. Burnham, DO,* Mark A. Mahan ③ , MD,† Ligia V. Onofrei, MD,† Daniel M. Cushman, MD,* Graham E. Wagner, MD,* Hank Shipman,* Masaru Teramoto, PhD, MPH,* and Zachary L. McCormick, MD*

Conclusions

The published evidence suggests that 10-kHz SCS may be an effective treatment for axial LBP in patients with both refractory axial predominant LBP (very low-quality evidence) and combined axial back and leg pain (very lowto low-quality evidence depending on the comparator), primarily in the FBSS population. There is insufficient evidence to evaluate the long-term effectiveness of burst SCS beyond six months for axial LBP reduction. Traditional low-frequency SCS appears minimally effective for reducing axial LBP pain (very low-quality evidence), though newer low-frequency systems show promise in nonrandomized studies (very low-quality evidence). Investigator-driven, non-industry-funded studies with long-term outcome assessment are needed in this area of clinical research.



Multicolumn spinal cord stimulation for predominant back pain in failed back surgery syndrome patients: a multicenter randomized controlled trial


Philippe Rigoard^{a,b,c,*}, Surajit Basu^d, Mehul Desai^{e,f}, Rod Taylor^g, Lieven Annemans^h, Ye Tanⁱ, Mary Jo Johnsonⁱ, Carine Van den Abeele^j, PROMISE Study Group, Richard North^{k,i}

160 (2019) 1410-1420

Mean low back pain by treatment group - as-treated

Surgically-naïve Refractory LBP

"Multifidus Restoration"

"Multifidus Restoration"

ARTICI E IN PRESS

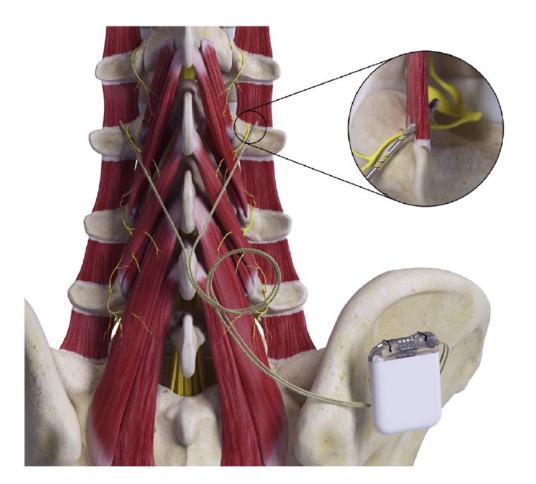
Neuromodulation: Technology at the Neural Interface

https://doi.org/10.1016/j.neurom.2021.10.011

Long-Term Outcomes of Restorative Neurostimulation in Patients With Refractory Chronic Low Back Pain Secondary to Multifidus Dysfunction: Two-Year Results of the ReActiv8-B Pivotal Trial

Christopher Gilligan, MD¹ ©; Willem Volschenk, MD²; Marc Russo, MD² ©; Matthew Green, MD³; Christopher Gilmore, MD⁴ ©; Vivek Mehta, MD⁵; Kristiaan Deckers, MD⁶; Kris De Smedt, MD¹; Usman Latif, MD, MBA³ ©; Peter Georgius, MD⁰; Jonathan Gentile, MD¹0; Bruce Mitchell, MD¹¹ ©; Meredith Langhorst, MD¹² ©; Frank Huygen, MD, PhD¹³; Ganesan Baranidharan, MD¹⁴; Vikas Patel, MD¹⁵; Eugene Mironer, MD¹⁶; Edgar Ross, MD¹; Alexios Carayannopoulos, DO, MPH¹²; Salim Hayek, MD, PhD¹³; Ashish Gulve, MD¹9 ©; Jean-Pierre Van Buyten, MD, PhD²⁰; Antoine Tohmeh, MD²¹; Jeffrey Fischgrund, MD²²; Shivanand Lad, MD, PhD²³; Farshad Ahadian, MD²⁴ ©; Timothy Deer, MD²⁵; William Klemme, MD²⁶ ©; Richard Rauck, MD²²; James Rathmell, MD¹ ©; Greg Maislin, MS²³ ©; Jan Pieter Heemels, MSc²9; Sam Eldabe, MD¹9; On Behalf of the ReActiv8-B Investigators

ARTICLE IN PRE

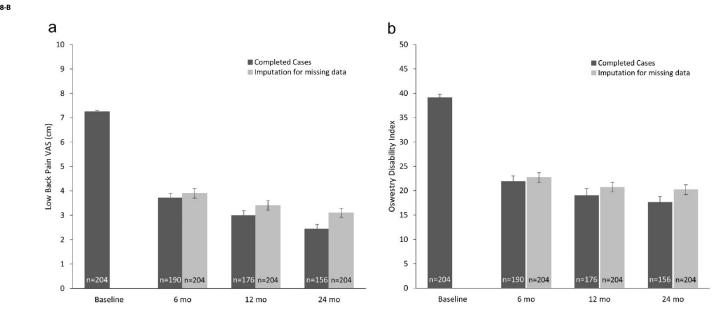

Neuromodulation: Technology at the Neural Interface

https://doi.org/10.1016/j.neurom.2021.10.011

Long-Term Outcomes of Restorative Neurostimulation in Patients With Refractory Chronic Low Back Pain Secondary to Multifidus Dysfunction: Two-Year Results of the ReActiv8-B Pivotal Trial

Christopher Gilligan, MD¹; Willem Volschenk, MD²; Marc Russo, MD²;

Matthew Green, MD³; Christopher Gilmore, MD⁴ e, Vivek Mehta, MD⁵; Kristiaan Deckers, MD⁶; Kris De Smedt, MD⁷; Usman Latif, MD, MBA⁸ e; Peter Georgius, MD⁷; Jonathan Gentile, MD¹⁰; Bruce Mitchell, MD¹¹ e; Meredith Langhorst, MD¹² e; Frank Huygen, MD, PhD¹³; Ganesan Baranidharan, MD¹⁴; Vikas Patel, MD¹³; Eugene Mironer, MD¹⁶; Edgar Ross, MD¹; Alexios Carayannopoulos, DO, MPH¹⁷; Salim Hayek, MD, PhD¹⁸; Ashish Gulve, MD¹⁹ e; Jean-Pierre Van Buyten, MD, PhD²⁸; Antoine Tohmeh, MD²¹; Jeffrey Fischgrund, MD²²; Shivanand Lad, MD, PhD²³; Farshad Ahadian, MD²⁴ e; Timothy Deer, MD²⁵; William Klemme, MD²⁶ e; Richard Rauck, MD³⁷; James Rathmell, MD¹⁰; Greg Maislin, MS²⁸ e; Jan Pieter Heemels, MSc²⁸; Sam Eldabe, MD¹⁵; On Behalf of the ReActiv8-B Investiqators

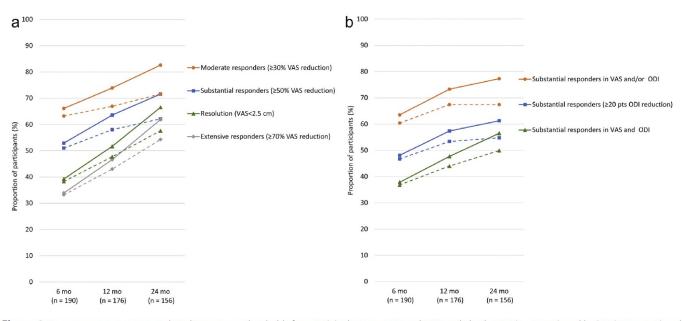

ARTICLE IN PRES

Neuromodulation: Technology at the Neural Interface

Received: September 29, 2021 Accepted: October 12, 2021 https://doi.org/10.1016/j.neurom.2021.10.011

Long-Term Outcomes of Restorative Neurostimulation in Patients With Refractory Chronic Low Back Pain Secondary to Multifidus Dysfunction: Two-Year Results of the ReActiv8-B Pivotal Trial

Christopher Gilligan, MD¹ e; Willem Volschenk, MD²; Marc Russo, MD² e; Matthew Green, MD³; Christopher Gilmore, MD⁴ e; Vivek Mehta, MD⁵; Kristiaan Deckers, MD⁰; Kris De Smedt, MD˚; Usman Latif, MD, MBA⁴ e; Peter Georgius, MD⁰; Jonathan Gentile, MD¹0; Bruce Mitchell, MD¹¹ e; Meredith Langhorst, MD¹² e; Frank Huygen, MD, PhD¹³; Ganesan Baranidharan, MD¹⁴; Vikas Patel, MD¹²; Eugene Mironer, MD¹⁴; Salim Hayek, MD, PhD¹³; Ashish Gulve, MD¹³ e; Jean-Pierre Van Buyten, MD, PhD²³, Antoine Tohmeh, MD²¹; Jeffrey Fischgrund, MD²²; Shivanand Lad, MD, PhD²³; Farshad Ahadian, MD²⁴0; Timothy Deer, MD²⁵, William Klemme, MD²⁶ e; Richard Rauck, MD²²; James Rathmell, MD¹ e; Greg Maislin, MS²⁶ e; Jan Pieter Heemels, MSc²³; Sam Eldabe, MD¹³; On Behalf of the ReActiv8-B Investiqators

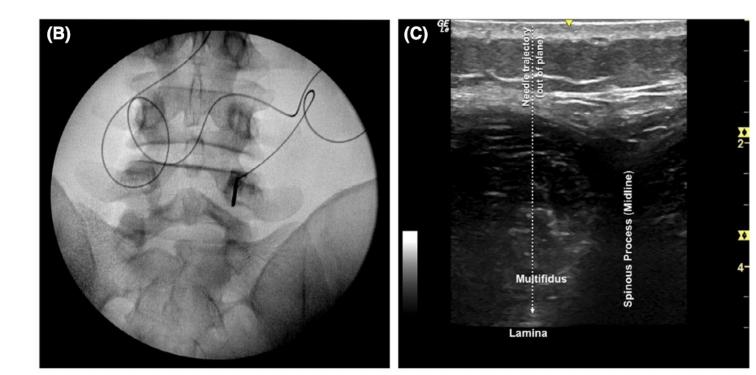

ARTICLE IN PRESS

Neuromodulation: Technology at the Neural Interface

https://doi.org/10.1016/j.neurom.2021.10.011

Long-Term Outcomes of Restorative Neurostimulation in Patients With Refractory Chronic Low Back Pain Secondary to Multifidus Dysfunction: Two-Year Results of the ReActiv8-B Pivotal Trial

Christopher Gilligam, MD¹ e; Willem Volschenk, MD²; Marc Russo, MD² e; Matthew Green, MD³; Christopher Gilmore, MD⁴ e; Vivek Mehta, MD⁵; Kristiaan Deckers, MD⁰; Kris De Smedt, MD˚; Usman Latif, MD, MBA⁴ e; Peter Georgius, MD⁰; Jonathan Gentile, MD¹0; Bruce Mitchell, MD¹¹ e; Meredith Langhorst, MD¹² e; Frank Huygen, MD, PhD¹³; Ganesan Baranidharan, MD¹⁴; Vikas Patel, MD¹²; Eugene Mironer, MD¹⁴; Salim Hayek, MD, PhD¹³; Ashish Gulve, MD¹³ e; Jean-Pierre Van Buyten, MD, PhD²³, Antoine Tohmeh, MD²¹; Jeffrey Fischgrund, MD²²; Shivanand Lad, MD, PhD²³; Farshad Ahadian, MD²⁴0; Timothy Deer, MD²⁵, William Klemme, MD²⁶ e; Richard Rauck, MD²²; James Rathmell, MD¹ e; Greg Maislin, MS²⁶ e; Jan Pieter Heemels, MSc²³; Sam Eldabe, MD¹³; On Behalf of the ReActiv8-B Investiqators


Figure 4. Response rates at common clinical importance thresholds for a. VAS (reduction ≥50% and 70%, and absolute VAS ≤ 2.5 cm), and b. ODI (≥20 points) and composites of VAS and ODI (≥50% and/or 20 points, ≥50% and/or 20 points). Solid lines represent completed cases, and dashed lines represent imputation for missing data (N = 204). [Color figure can be viewed at www.neuromodulationjournal.org]

Treatment of chronic axial back pain with 60-day percutaneous medial branch PNS: Primary end point results from a prospective, multicenter study

Pain Practice. 2021;21:877–889.

Treatment of chronic axial back pain with 60-day percutaneous medial branch PNS: Primary end point results from a prospective, multicenter study

Pain Practice. 2021;21:877-889.

Pain Practice. 2021;21:877-889.

Treatment of chronic axial back pain with 60-day percutaneous medial branch PNS: Primary end point results from a prospective, multicenter study

≥30% pain improvement

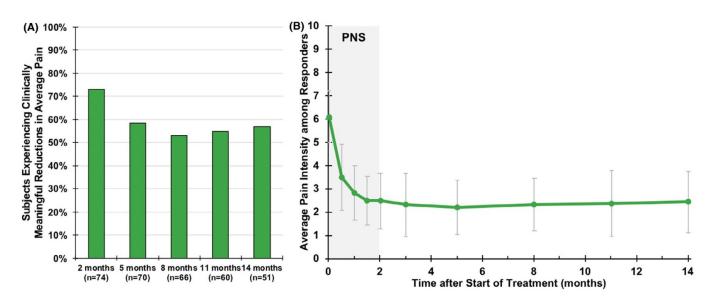


FIGURE 3 Reductions in average back pain intensity. (a) Shows the proportion of participants responding with clinically meaningful reductions in average pain intensity (Brief Pain Inventory, question 5 [BPI-5]) over time. Data collection is complete for follow up visits through 8 months (including the primary end point at 2 months), with data reported thereafter (months 11–14) as observed, while prospective follow-up is ongoing. (b) Shows the average pain intensity scores (mean ± SD) among responders. PNS, peripheral nerve stimulation

Pain Practice. 2021;21:877-889.

Treatment of chronic axial back pain with 60-day percutaneous medial branch PNS: Primary end point results from a prospective, multicenter study

≥10-point ODI improvement

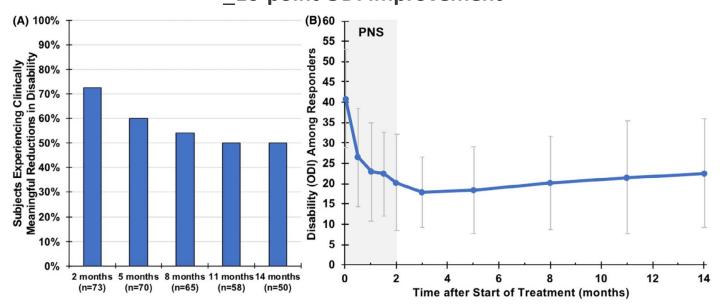


FIGURE 4 Reductions in back pain-related disability. (a) Shows the proportion of participants responding with clinically meaningful reductions in back pain-related disability (Oswestry Disability Index [ODI]) over time. Data collection is complete for visits through 8 months, with data reported thereafter (months 11–14) as observed, while prospective follow-up is ongoing. (b) Shows the disability scores (mean ± SD) among responders. PNS, peripheral nerve stimulation

Find Studies ▼ About Studies ▼ Submit Studies ▼

Resources ▼

About Site ▼

PRS Login

Home >

Search Results >

Study Record Detail

☐ Save this study

SPRINT® Peripheral Nerve Stimulation for the Treatment of Back Pain

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Know the risks and potential benefits of clinical studies and talk to your health care provider before participating. Read our disclaimer for details.

Sponsor:

SPR Therapeutics, Inc.

Collaborator:

United States Department of Defense

Information provided by (Responsible Party):

SPR Therapeutics, Inc.

ClinicalTrials.gov Identifier: NCT04246281

Recruitment Status ①: Recruiting
First Posted ①: January 29, 2020
Last Update Posted ①: July 29, 2022

See Contacts and Locations

Peripheral Joint Denervation

Continued Pain and Disability Despite Treatment

Bracing

Cane/assistive device

Ice/cryotherapy, Heat

Oral Anti-inflam meds

Targeted Exercise

- Quad, hip girdle, core
- Bike/swimming

Formal Physical Therapy

- Strength, mobility
- Gait
- Ergonomics
- Pacing
- Graded home exercise program

Joint Injection

- Steroid
- Hyaluronic Acid
- Regenerative agents

Joint Denervation or Neuromodulation

- Radiofrequency
- Phenol/alcohol

Surgery

-Arthroplasty

Joint Denervation or Neuromodulation

- Radiofrequency
- Phenol/alcohol
- Peripheral nerve stimulation?
- Dorsal root ganglion stimulation?
- Spinal cord stimulation?

Knee Joint Denervation

Current Outcome Literature

The Effectiveness of Fluoroscopically Guided Genicular Nerve Radiofrequency Ablation for the Treatment of Chronic Knee Pain Due to Osteoarthritis

A Systematic Review

Alexandra E. Fogarty, MD, Taylor Burnham, DO, Keith Kuo, BS, Quinn Tate, MD, Beau P. Sperry, BA, Cole Cheney, MD, David R. Walega, MD, MSCI, Lynn Kohan, MD, Steven P. Cohen, MD, Daniel M. Cushman, MD, Zachary L. McCormick, MD, and Aaron Conger, DO

American Journal of Physical Medicine & Rehabilitation • Volume 101, Number 5, May 2022

- Genicular RFA > sham RFA (Choi)
- Genicular RFA > IA steroid injection (Davis)
- Genicular RFA > IA hyaluronic acid + prp (Shen)
- Genicular RFA > PT and NSAIDs

50% pain reduction responder rate at 6-month f/u: 55-75%

*practice audit data demonstrates responder rate as low as 35%

Severity of Knee Osteoarthritis and Pain Relief After Cooled Radiofrequency Ablation of the Genicular Nerves

L. McLean House II, MD,* Marc A. Korn, MD,[†] Ankur Garg, , MD, MBA,[‡] Michael J. Jung, MD, MBA,* Mark C. Kendall, MD,[§] David R. Walega, MD, MSCI,[†] and Zachary L. McCormick, MD[¶]

Table 1. Covariates associated with treatment success. Covariates passing backwards elimination criteria (α < 0.20) for multivariate analysis are shown. Symptom duration was handled as a continuous variable where the odds ratio is the perunit increase in covariate. Area under the receiver operating characteristics curve = 0.765; P<0.0001.

Variable	OR	OR 95% CI	P Value
Worst compartment KL grade = 4	4.43	1.22-19.3	0.023*
Bilateral procedure	2.39	0.87-6.84	0.09
Prior meniscal repair or scope	2.92	0.85 - 11.9	0.09
Symptom duration, mo	0.99	0.97-0.999	0.044*

CI = confidence interval; KL = Kellgren Lawrence; OR = odds ratio.

^{*}Statistically significant.

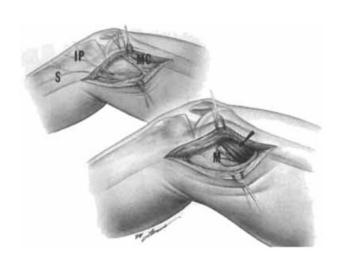
XFORD

Osteoarthritis Index.

NEUROMODULATION & INTERVENTION SECTION

Original Research Article

A Prospective Randomized Trial of Prognostic Genicular Nerve Blocks to Determine the Predictive Value for the Outcome of Cooled Radiofrequency Ablation for Chronic Knee Pain Due to Osteoarthritis


Zachary L. McCormick, MD,* Rajiv Reddy, MD,† Marc Korn, MD,‡ David Dayanim, MD, MS, MHA,§ Raafay H. Syed, MD,¶ Meghan Bhave, MD,♠ Mikhail Zhukalin, DO,□ Sarah Choxi, MD,** Ali Ebrahimi, MD,†† Mark C. Kendall, MD,‡ Robert J. McCarthy, PharmD,‡ Dost Khan, MD,‡ Geeta Nagpal, MD,‡ Karina Bouffard, MD, MPH,§ and David R. Walega, MD. MSCI‡

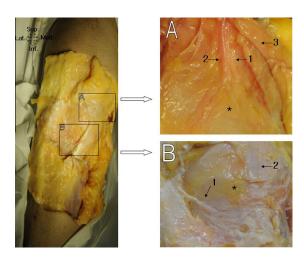
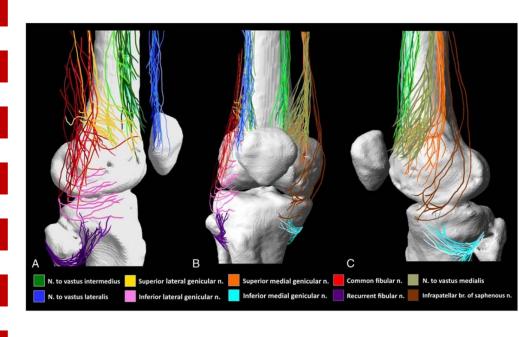

Prognostic Block: 1mL of 2% lidocaine; >50% relief

Table 2 Responder analysis for pain relief from prognostic block						
Relief from Prognostic Block	Outcome	Met Outcome Criteria, %				
≥50	NRS < 50% of baseline PGIC < 3	41.7 31.8				
≥80	WOMAC > 15-point decrease NRS < 50% of baseline PGIC < 3	44.8 51.9 31.8				
≥90	WOMAC > 15-point decrease NRS < 50% of baseline PGIC < 3	54.5 60.0 37.5				
	WOMAC > 15-point decrease	56.3				

NRS = numeric rating scale for pain (0–10) where 0 = no pain and 10 = worst pain imaginable; PGIC = Patient Global Impression of Change where 1 = very much improved and 7 = very much worse; WOMAC = Western Ontario and McMaster Universities


Do we have the *correct* targets?

Franco C, Buvanendran A, Petersohn J, Menzies R, Menzies L. Innervation of the anterior capsule of the human knee. Implications for radiofrequency ablation. Reg Anesth *Pain Med* 2015; 5:363–8.

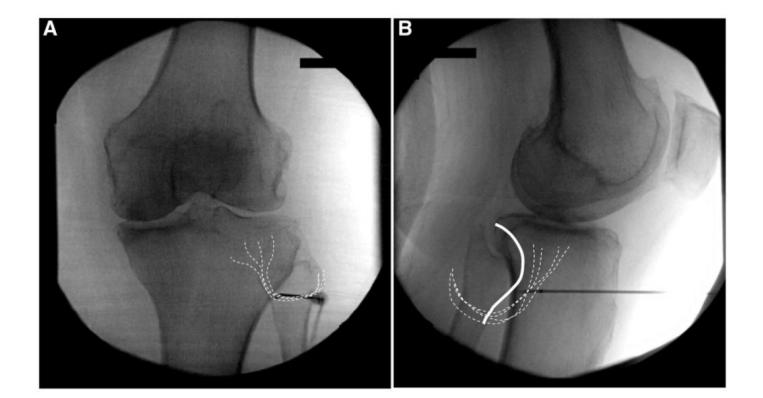
Tran et al. 2018. Anatomical Study of the Innervation of Anterior Knee Joint Capsule: Implication for Image-Guided Intervention. *Regional Anesthesia and Pain Medicine*.


RFA Technique Optimization

Pain Medicine, 00(0), 2021, 1–4
doi: 10.1093/pm/pnab329
Advance Access Publication Date: 17 November 2021

Letter to the Editor

Quinn Tate (i), MD,*,† James B. Meiling (ii), DO,‡ Taylor R. Burnham, DO, MS,*
Aaron Conger, DO,* and Zachary L. McCormick (ii), MD*



A Proposed Protocol for Safe Radiofrequency Ablation of the Recurrent Fibular Nerve for the Treatment of Chronic Anterior Inferolateral Knee Pain

Beau P. Sperry,* Aaron Conger, DO,[†] Lynn Kohan , MD[‡] David R. Walega, MD, MSCI[§] Steven P. Cohen , MD[¶] and Zachary L. McCormick, MD[†]

Pain Medicine, 00(0), 2020, 1–4 doi: 10.1093/pm/pnaa291 Letter to the Editor

AP view IPBSN RFA

Lateral view IPBSN RFA

Technical considerations for genicular nerve radiofrequency ablation: optimizing outcomes

Zachary L McCormick , 1 Steven P Cohen , 2 David R Walega, Lynn Kohan , 4

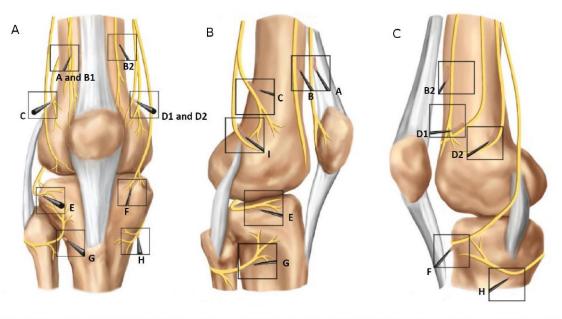
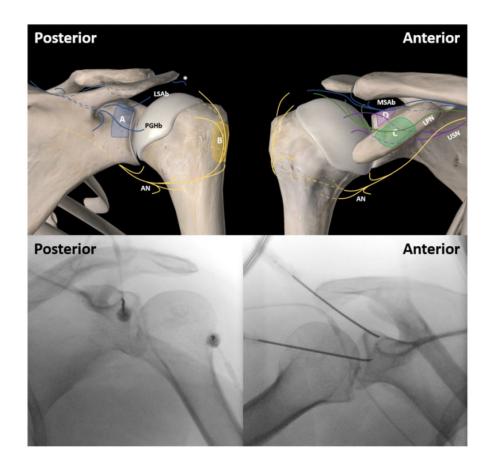


Figure 2 Innervation of the anterior knee joint with target nerves. (A) Anterior view, (B) lateral view, (C) medial view. (A) Nerve to vastus lateralis, B1. Lateral branch of nerve to vastus intermedius, B2 medial branch nerve to vastus intermedius, C. Superior lateral genicular nerve, D1. Nerve to vastus medialis, D2. Superior medial genicular nerve, E. Inferior lateral genicular nerve, F. Infrapatellar branch of saphenous, G. Recurrent fibular nerve, H. Inferior medical genicular nerve, I. Terminal articular branch of the common fibular nerve.

Shoulder Joint Denervation


Shoulder Joint Denervation

Putting Our Shoulder to the Wheel: Current Understanding and Gaps in Nerve Ablation for Chronic Shoulder Pain

Maxim S. Eckmann , MD,* Zachary L. McCormick , MD,† Colby Beal, DO,* Jonathan Julia, MD,* Cole W. Cheney, MD,† and Ameet S. Nagpal , MD*

Advance Access Publication Date: 10 February 2020 Letter to the Editor

Pain Medicine, 21(4), 2020, 868-871 doi: 10.1093/pm/pnz335

LETTER TO THE EDITOR

Terminal Sensory Articular Nerve Radiofrequency Ablation for the and Case Series

Treatment of Chronic Intractable Shoulder Pain: A Novel Technique Maxim S. Eckmann, MD,* Justin Johal, * Brittany Bickelhaupt, MD,* Zachary McCormick, MD, 8 Rany T. Abdallah, MD, PhD, 9 Robert Menzies, MD,

Sameer Soliman, MD,^{III} and Ameet Singh Nagpal, MD, MS, MEd*

Responders

Number

Table 1. Characteristics and outcomes of patients

Subject

2†

3‡

5

71,5

91

11*

12[¶]

139

14

15

16*

17

18*

19‡,\$

Subject

Number

Nonresponders 10

Age,

64 M 136.1

70 M 61.2

85 M 108.9

77 M Unk

89

71

57

85

53

47

61 M 109.3

75

52

63

88 M Unk

34 M 83.9

quency ablation; Unk = unknown. *History of shoulder surgery. [†]Ongoing relief at time at last follow-up.

History of arthroplasty surgery. More than one ablative procedure.

Age, Sex

Weight,

72.9

81.7

72.9

55.3

98.9

81.6

81.6

76

127

79.4

Fewer than three terminal nerve branches were ablated.

Weight,

kg

103.4

Sex kg

M 61.2 Primary

Primary

Diagnosis

Diagnosis

Painful rotator cuff tendinopathy

Osteoarthritis of the shoulder

Painful rotator cuff tendinopathy

Sprengel deformity

Complex regional pain syndrome, type 1

Adhesive capsulitis of both shoulders

Adhesive capsulitis of both shoulders

Painful rotator cuff tendinopathy

Painful rotator cuff tendinopathy

Duration of

Shoulder

Pain

>6 mo

Shoulder

Pain

>6 mo

4 v

>1 y

>1 v

>6 mo

>6 mo

>6 mo

3 y

4 y

3 vabAN = axillary nerve; abLPN = lateral pectoral nerve; abSN = suprascapular nerve; CRFA = cooled radiofrequency ablation; TRFA = traditional radiofre-

>1 y

Relief

mo

10

10

Duration.

Follow-up

mo

10

Duration,

Percent

Relief

80

60

>50

100

>50

100

50

80

0

30

40

20

0

0

10

Percent

Relief

70

Nerves

abLPN

abAN, abSN

Involved

abAN, abSN, abLPN 3

abAN, abSN, abLPN 3

abAN, abSN, abLPN 5

abAN, abSN, abLPN 5

abAN, abSN, abLPN 9

abAN, abSN, abLPN 4

abAN, abSN, abLPN 8

abAN, abSN, abLPN 3

abAN, abSN, abLPN 1

abAN, abSN, abLPN 4

abAN, abSN, abLPN 3

abAN, abSN, abLPN 3

abAN, abSN, abLPN 2

abAN, abSN, abLPN 2

abAN, abSN, abLPN 1

abAN, abSN, abLPN 1

abSN

Procedure Involved

TRFA

TRFA

TRFA

CRFA

CRFA

CRFA

CRFA

CRFA

CRFA

Duration of Procedure Nerves

TRFA

TRFA

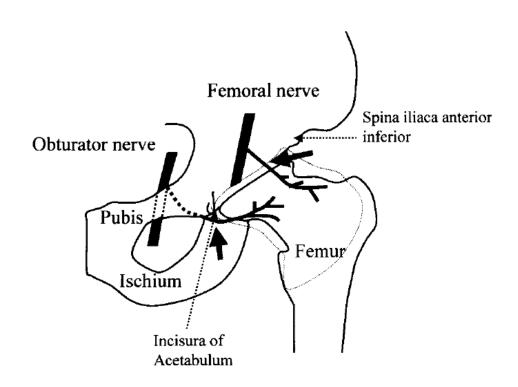
TRFA

TRFA

TRFA

TRFA

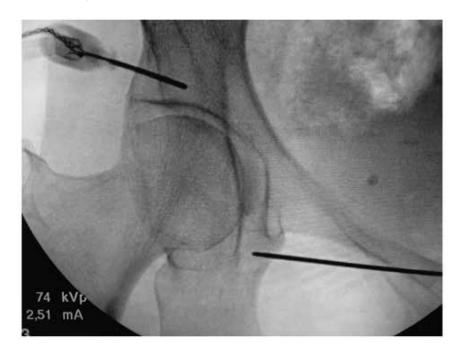
CRFA


CRFA

CRFA

CRFA

Hip Joint Denervation?


Percutaneous radiofrequency lesioning of sensory branches of the obturator and femoral nerves for the treatment of hip joint pain.

Observational Study

Cooled Radiofrequency Neurotomy of the Articular Sensory Branches of the Obturator and Femoral Nerves – Combined Approach Using Fluoroscopy and Ultrasound Guidance: Technical Report, and Observational Study on Safety and Efficacy

Leonardo Kapural, MD, PhD, Suneil Jolly, MD, Joao Mantoan, MD, Harish Badhey, MD, and Ty Ptacek, MD

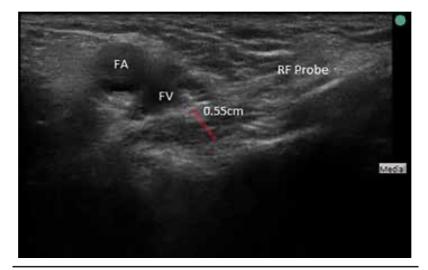


Fig. 2. US guided passage of RF introducer and probe of femoral neurovascular bundle. Careful US guided advancement of RF probe just next to the femoral vein (FV). Lateral to the vein is a femoral artery (FA). Measured distance of RF electrode to femoral vein was 0.55 cm.

Author, Year	N	Time of Follow-up Assessment	•				
Akatov, 1997	13	36 months	92% (12) patients with "pain relief"*				
Kawaguchi, 2001	14	1 month	86% (12) patients with >50% pain reduction*				
Nawagaciii, 2001	- '	11 months	60% pain reduction†				
Malik, 2003	4	3 months	75% (3) patients with >50% pain reduction*				
Ivialik, 2003	-	1-3 months	30-70% pain reduction†				
Rivera, 2012	18	6 months	44% (8) patients with > 50% pain reduction - 33% pain reduction at 6 months†				
Cortiñas-Sáenz, 2014	3	1 month - 6 months	100% (3) of patients with >50% pain reduction* ** 50-80% pain reduction - 100% (3) of patients with >50% pain reduction** 50-80% pain reduction†				
Kapural, 2018	23	6 months	>80% pain reduction*				

**Calculated from primary data

Limitations

- Multiple nerves supply sensation to the hip joint
 - Obturator nerve branches
 - Femoral nerve branches
 - Accessory femoral and accessory obturator nerves
 - Nerve to the quadratus femoris
 - Superior gluteal nerve
 - Direct branches from the sciatic nerve
- Parallel placement of electrode?
- Femoral Artery and Vein

Posterior Innervation?

Pain Medicine, 22(5), 2021, 1072–1079

doi: 10.1093/pm/pnab057

Advance Access Publication Date: 10 February 2021

Original Research Article

NEUROMODULATION & MINIMALLY INVASIVE SURGERY SECTION

Innervation of the Posterior Hip Capsule: A Cadaveric Study

Ameet S. Nagpal , MD, MS, MEd,* Caroline Brennick, DO,* Annette P. Occhialini, MD,[†]
Jennifer Gabrielle Leet, MD,[‡] Tyler Scott Clark, MD,[‡] Omid B. Rahimi, PhD,[†]Kendall Hulk, DO,[‡] Brittany
Bickelhaupt, MD,[§] and Maxim S. Eckmann , MD*

NEUROMODULATION & MINIMALLY INVASIVE SURGERY SECTION

Innervation of the Posterior Hip Capsule: A Cadaveric Study

Ameet S. Nagpal , MD, MS, MEd,* Caroline Brennick, DO,* Annette P. Occhialini, MD,† Jennifer Gabrielle Leet, MD,† Tyler Scott Clark, MD,† Omid B. Rahimi, PhD,† Kendall Hulk, DO,† Brittany Bickelhaupt, MD,§ and Maxim S. Eckmann , MD*

Figure 7. PA fluoroscopic image at zero degrees of ipsilateral obliquity of a right hip in the prone position. The cephalad radio-opaque marker is overlying the articular branches of the SGN. The caudal radio-opaque marker is overlying the NQF. The location of the sciatic nerve is demonstrated by the translucent yellow structure.

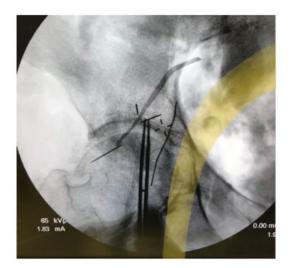


Figure 8. PA fluoroscopic image of the right hip in the prone position with twenty degrees of ipsilateral obliquity. The needle which is held in place by forceps over the superomedial portion of the acetabulum is approaching the NQF's terminal innervation zone of the quadratus femoris muscle. The dissection pin which is overlying the cephalad portion of the femoral head is used to identify the articular branches of the SGN, which are potential locations where a block can be performed. The cephalad radio-opaque marker is overlying the Articular branches of the SGN. The caudal radio-opaque marker is overlying the NQF. The location of the sciatic nerve is demonstrated by the translucent yellow structure.

Find Studies ▼

About Studies ▼

Submit Studies ▼

Resources ▼

About Site ▼

PRS Login

Home >

Search Results >

Study Record Detail

Save this study

Use of Cooled Radiofrequency for the Treatment of Hip Pain Associated With Hip OA Compared to Intra-articular Steroid Injections

A

The safety and scientific validity of this study is the responsibility of the study sponsor and investigators. Listing a study does not mean it has been evaluated by the U.S. Federal Government. Read our disclaimer for details.

ClinicalTrials.gov Identifier: NCT04329884

Recruitment Status 1 : Unknown

Verified March 2020 by Antonia Faustina Chen, Brigham and Women's Hospital.

Recruitment status was: Recruiting

First Posted 1: April 1, 2020

Last Update Posted 1: April 1, 2020

Sponsor:

Brigham and Women's Hospital

Collaborator:

Rothman Institute Orthopaedics

Information provided by (Responsible Party):

Antonia Faustina Chen, Brigham and Women's Hospital

Regenerative Medicine and Orthrobiologics

Regenerative Medicine and Orthrobiologics

The Spine Journal 22 (2022) 226-237

Systematic Review/Meta-Analysis

The effectiveness of intradiscal biologic treatments for discogenic low back pain: a systematic review

Byron J. Schneider, MD^{a,*}, Christine Hunt, DO^b, Aaron Conger, DO^c, Wenchun Qu, MD, PhD^d, Timothy P. Maus, MD^e, Yakov Vorobeychik, MD, PhD^f, Jianguo Cheng, MD, PhD^g, Belinda Duszynski, BS^h, Zachary L. McCormick, MDⁱ

The Spine Journal 22 (2022) 226-237

Systematic Review/Meta-Analysis

The effectiveness of intradiscal biologic treatments for discogenic low back pain: a systematic review

Byron J. Schneider, MD^{a,*}, Christine Hunt, DO^b, Aaron Conger, DO^c, Wenchun Qu, MD, PhD^d, Timothy P. Maus, MD^c, Yakov Vorobeychik, MD, PhD^f, Jianguo Cheng, MD, PhD^g, Belinda Duszynski, BS^h, Zachary L. McCormick, MD^f

Table 1

Treatment success rates defined as \geq 50% pain reduction reported in individual randomized controlled trials and observational studies; the studies are grouped by biologic agent

	Inclusion Criteria	Imaging Criteria	Discography	Outcom	# Patients	Total	Follow-Up	Responder Rate
	Platelet Rich Plasma (PRP)							
	Observational Studies							
Navani 2015	discogenic LBP ≥6 mos; failed conservative tx	annular tears, or	concordant pain on discography	Verbal Pain Scale	6	6	q2-4 weeks for 6 months	6 months: 6/6 100%
Levi 2016	back pain greater than leg pain with an intensity of 40mm on a 100mm VAS; facet pain excluded by blocks	HIZ, disc protrusion,	not required, but some had prior discogram	VAS	22	22	1,2,6 months	1 months: 7/22 [32% (12-51%)] 2 months: 9/22 [41% (20-61%)] 6 months: 9/22 [41% (20-61%)]
Akeda 2017	discogenic LBP ≥3 mos		concordant pain on discography or disc block	VAS	14	14	4,8,16,24, 32,40,48 weeks	4 weeks: 10/14 [71% (48-95%)] 24 weeks: 7/14 [50% (24-76%)] 48 weeks: 6/14 [43% (17-69%)]
	Bone Marrow Aspirat	e Concentrate - Autolo	gous					
	Observational Studies							
Pettine 2015	centralized LBP≥6 mos; failed conservative tx≥3 mos; ODI of at least 30/100; VAS of at least 40/100		not required, but 7 had discogram to confirm affected levels	VAS	26	26	3,6,12 months	6 months: 19/26 [73% (56-90%)] 12 months: 16/26 [62% (43-80%)]
Wolff 2020			positive discogram	NRS	33	33	2,6,12,24, 52 weeks	As reported: 2 weeks 4/29 (13.8%, 95% CI: 1.2-26.3%) 6 weeks 11/24 (45.8%, 95% CI: 2.5-6.6.8%) 12 weeks 71/4 (14.1%, 95% CI: 1.78-6.6.8%) 24 weeks 4/72 (25.5%, 95% CI: 3.3-43.7%) 52 weeks 7/18 (38.9%, 95% CI: 16.4-61.4%) Worst Case analysis: 2 weeks 4/33 (12.1%, 95% CI: 1.0-23.3%) 6 weeks 1/33 (33.3%, 95% CI: 1.2-24.9.4%) 24 weeks 4/33 (12.1%, 95% CI: 3-3-35.2%) 24 weeks 4/33 (12.1%, 95% CI: 1.0-23.3%) 52 weeks 7/33 (21.2%, 95% CI: 7.3-35.2%)
	Mesenchymal Stem C	ells - Autologous		17.8-64.6%) 24 weeks 4/17 (23.5%, 95% Cl: 3.3-43.7%) 52 weeks 7/18 (38.9%, 95% Cl: 16.4-61.4%) Worst Case analysis: 2 weeks				
	Observational Studies	;		4/33 (12.1%, 95% CI: 1.0-23.3%) 6 weeks 11/33 (33.3%, 95% CI: 17.2-49.4%) 12 weeks 7/33 (21.2%, 95% CI: 7.3-35.2%) 24 weeks				
Kumar 2017	discogenic LBP ≥3 mos; failed conservative tx; ≥4/10 VAS; ≥30% disability ODI	MRI (Pfirmann stages 3 or 4); decrease in disc height of >20%	degenerative symptomatic discs on discography	VAS	10	10	1 week, 1,3,6,9,12 months	4/33 (12.1%, 95% Cl: 1.0-23.3%) 52 weeks 7/33 (21.2%, 95% Cl: 7.3-35.2%)

The Spine Journal 22 (2022) 226-237

Systematic Review/Meta-Analysis

The effectiveness of intradiscal biologic treatments for discogenic low back pain: a systematic review

Byron J. Schneider, MD^{a,*}, Christine Hunt, DO^b, Aaron Conger, DO^c, Wenchun Qu, MD, PhD^d, Timothy P. Maus, MD^e, Yakov Vorobeychik, MD, PhD^f, Jianguo Cheng, MD, PhD^g, Belinda Duszynski, BS^h, Zachary L. McCormick, MDⁱ

Conclusion

When appropriate inclusion criteria were applied, some observational data suggests that intradiscal biologic agents may be effective treatments for discogenic LBP. When aggregation of data was possible, 22/42 (52.4%, 95% CI: 37%-67%) study participants achieved >50% relief of LBP following intradiscal injection of PRP with a minimum follow-up of six months. For MSC therapies, depending on how loss-to-follow-up is counted, success rates of >50% improvement in LBP at six months were 23/43 (53.5%, 95% CI: 38.6%–68.4%) (as reported) or 23/59 (39.0%, 95% CI: 26.5-51.4%) (worst-case analysis) at six months. According to GRADE the published evidence supporting the use of intradiscal MSCs and PRP is of very low quality. Given the poorly regulated and rapidly expanding US direct-to-consumer stem cell industry, high quality explanatory trials are needed to better assess the true effectiveness of these treatments.

The Spine Journal 20 (2020) 138-149

Basic Science

In vitro and in vivo evaluation of discogenic cells, an investigational cell therapy for disc degeneration

Lara Ionescu Silverman, PhD^{a,b,*}, Galina Dulatova, PhD^a, Terry Tandeski, PhD^a, Isaac E. Erickson, PhD^a, Beverly Lundell, PhD^c, David Toplon, DVM, DACVP^c, Tricia Wolff^d, Antwain Howard, DVM, DACLAM^d, Subba Chintalacharuvu, PhD^d, Kevin T. Foley, MD^{a,b,e}

a DiscGenics, Inc, 5940 W Harold Gatty Dr, Salt Lake City, UT 84116, USA b Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA c WuXi AppTec, 2540 Executive Drive, St. Paul, MN 55120, USA d Covance Laboratories, 671 S. Meridian Rd, Greenfield, IN, USA e Semmes-Murphey Clinic, 6325 Humphreys Blvd, Memphis, TN, USA Received 8 April 2019; revised 13 August 2019; accepted 14 August 2019

Clinical Study

The Spine Journal 21 (2021) 212-230

Allogeneic mesenchymal precursor cells treatment for chronic low back pain associated with degenerative disc disease: a prospective randomized, placebo-controlled 36-month study of safety and efficacy

Kasra Amirdelfan, MD^{a,*}, Hyun Bae, MD^b, Tory McJunkin, MD^c, Michael DePalma, MD^d, Kee Kim, MD^e, William J. Beckworth, MD^f. Gary Ghiselli, MD^g, James Scott Bainbridge, MD^{g,1}, Randall Dryer, MD^h, Timothy R. Deer, MDⁱ, Roger D. Brown, BA^j

a IPM Medical Group, Inc., 450 Wiget Lane, Walnut Creek, CA 94598, USA b The Spine Institute, 2811 Wilshire Blvd, Suite 850, Santa Monica, CA 90403, USA ^c Arizona Pain Specialists, 9787 N. 91st St. Suite 101, Scottsdale, AZ 85258, USA ^d Virginia Spine Research Institute, Inc., 9020 Stony Point Parkway, Suite 140, Richmond, VA 23235, USA CUC Davis Spine Center, 3301 C St. Suite 1500, Sacramento, CA 95816, USA f Department of Orthopaedics, Emory University School of Medicine, 59 Executive Park South, Suite 3000, Atlanta, GA 30329,

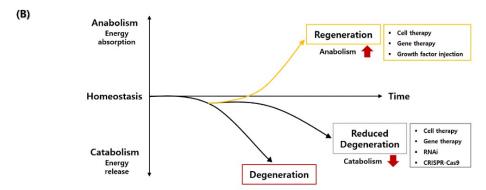
> g Denver Spine, 7800 E. Orchard Rd, Suite 100, Greenwood Village, CO 80111, USA h Central Texas Spine Institute, 6818 Austin Center Blvd, Suite 200, Austin, TX 78731, USA ¹ The Center for Pain Relief, Inc., 400 Court St, Suite 100, Charleston, WV 25301, USA ¹ Mesoblast Inc., 12912 Hill Country Blvd, Building F, Suite 230, Bee Cave, TX 78738, USA Received 10 December 2019; revised 1 October 2020; accepted 2 October 2020

> > International Journal of Spine Surgery, Vol. 14, No. 2, 2020, pp. 239–253 https://doi.org/10.14444/7033 ©International Society for the Advancement of Spine Surgery

VAST Clinical Trial: Safely Supplementing Tissue Lost to Degenerative Disc Disease

DOUGLAS P. BEALL, MD, GREGORY L. WILSON, DO, RANDOLPH BISHOP, MD, 3 WILLIAM TALLY, MD⁴





Review

Genetic Therapy for Intervertebral Disc Degeneration

Eun Ji Roh ^{1,2,†}, Anjani Darai ^{1,2,†}, Jae Won Kyung ¹, Hyemin Choi ¹, Su Yeon Kwon ¹, Basanta Bhujel ^{1,2}, Kyoung Tae Kim ^{3,4} and Inbo Han ^{1,*}

TGF-β Pathway

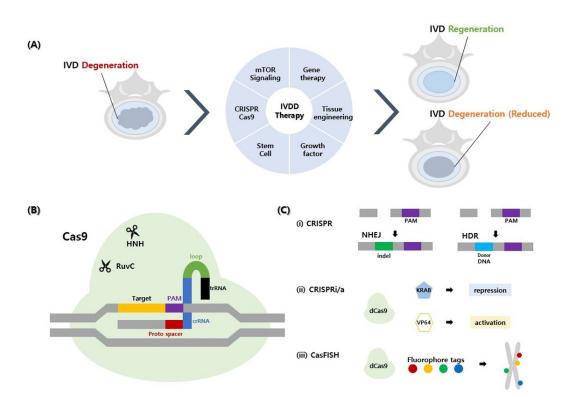
The SPINE JOURNAL INASS.

ABSTRACT ONLY I VOLUME 15, ISSUE 10, SUPPLEMENT, S119, OCTOBER 01, 2015

Intradiscal Injection of YH14618, a First-in-Class Disease-Modifying Therapy, Reduces Pain and Improves Daily Activity in Patients with Symptomatic Lumbar Degenerative Disc Disease

Young-Joon Kwon, MD, PhD • Eun Sang Kim, MD, PhD • Sung-Min Kim, MD, PhD • Hee Park, MD, PhD • Hae Mi Byun • Su-Youn Nam, MD, PhD

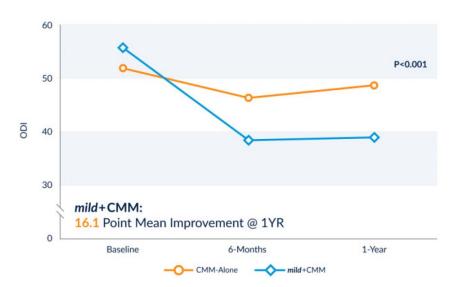
DOI: https://doi.org/10.1016/j.spinee.2015.07.093



Review

Genetic Therapy for Intervertebral Disc Degeneration

Eun Ji Roh ^{1,2,†}, Anjani Darai ^{1,2,†}, Jae Won Kyung ¹, Hyemin Choi ¹, Su Yeon Kwon ¹, Basanta Bhujel ^{1,2}, Kyoung Tae Kim ^{3,4} and Inbo Han ^{1,*}

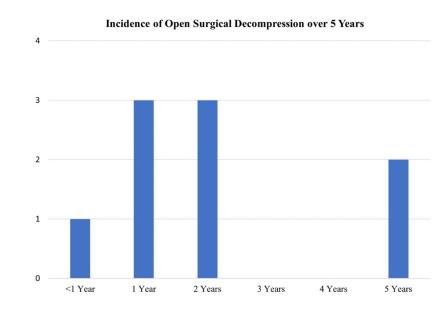


Minimally Invasive Pain Surgery

INTERVENTIONAL PAIN & SPINE MEDICINE SECTION

The MOTION Study: A Randomized Controlled Trial with Objective Real-World Outcomes for Lumbar Spinal Stenosis Patients Treated with the *mild*® Procedure: One-Year Results

Timothy R. Deer , MD,* Shrif J. Costandi, MD,† Edward Washabaugh, MD,† Timothy B. Chafin, MD,⁵ Sayed E. Wahezi, MD,¹ Navdeep Jassal, MD, Dawood Sayed, MD,^{||}



DOI: 10.1111/papr.13020

RESEARCH ARTICLE

The durability of minimally invasive lumbar decompression procedure in patients with symptomatic lumbar spinal stenosis: Long-term follow-up

Pain Practice. 2021;21:826-835.

DOI: 10.1111/papr.13111

RESEARCH ARTICLE

The incidence of lumbar spine surgery following Minimally Invasive Lumbar Decompression and Superion Indirect Decompression System for treatment of lumbar spinal stenosis: a retrospective review

Jonathan M. Hagedorn $MD^1 \odot \mid Abhishek Yadav MD^2 \odot \mid Ryan S. D'Souza <math>MD^3 \mid Nathan DeTemple MD^4 \mid Jason S. Wolff <math>MD^1 \mid James B. Parmele MD, MBA^1 \mid Timothy R. Deer MD^5$

Pain Practice. 2022;22:516-521.

TABLE 4 (Continued)

Patients who underwent Superion procedure only, $n = 124$						
Degree of Lumbar Spinal Stenosis	Severe					
Specific Level(s) Treated with Superion	L4-5					
Time Between Procedure and Last Follow-up (days)	942					
Size of Superion Implant	10					
Type of Surgery	Laminectomy and Fusion					
Time Between Procedure and Surgery (days)	291					
Levels Targeted in Surgery	L4-5					
Discharge Location	Home					

Note: No patients who underwent both MILD and Superion had subsequent spine surgery.

^aNote that two patients had MILD procedures performed twice.

Position Statement on Arthrodesis of the Spine by the Non-Spine Surgeon

Position Statement

Optimal patient care and patient safety are best served when surgical diseases affecting the spine are managed by neurosurgeons and orthopaedic spinal surgeons trained in the full spectrum of spinal biomechanics, including instrumentation and fusion techniques. Therefore, arthrodesis or any other intervention that alters the biomechanics of the spine should not be performed by practitioners in other fields outside of specialty-trained neurosurgery or orthopaedic spinal surgeons.

NASS Insider

March 01, 2022

NASS Positions on Specialty Scope of Practice and on Arthrodesis of the Spine

NASS Position Statement on Arthrodesis of the Spine:

Optimal patient care and patient safety are best served when surgical diseases affecting the spine are managed by neurosurgeons and orthopaedic spinal surgeons trained in the full spectrum of spinal anatomy and biomechanics, including instrumentation and fusion techniques. A unique range and depth of surgical skills are acquired throughout the neurosurgeon's and orthopaedic surgeon's career, including residency, fellowship, and post-training continuing education and practice. Patient safety advocates that only qualified surgeons administer procedures that affect the structure and biomechanics of patients with spine problems. Arthrodesis or any other intervention that alters the biomechanics of the spine should not be performed by practitioners trained in fields other than neurosurgery and orthopaedic spinal surgery.

Home	Laws	Bills	Sessions	House	Senate	

HB941 by Representative John "Big John" Illg , Jr.

TIDO TI DY Representative comi Big comi mg, ci.

PHYSICIANS: Provides requirements and limitations relative to certain procedures performed on the spine

2022 REGULAR SESSION

Current Status: Pending House Health and Welfare - Considered 5/11/22

Digests >

Amendments >

Text ▶

		Journal		
Date	Chamber	Page	Action	sort history by ascending dates
04/05	Н	15	Read by title, under the rules, referred to	the Committee on Health and Welfare
04/04	Н	36	Read by title. Lies over under the rules.	

Authors >

Health and Welfare Committee Louisiana House of Representatives Box 94062 900 North 3rd Street Baton Rouge, LA 70804 via Email: h-hw@legis.la.gov

Re: House Bill 941

Dear Representative Illg, Chairman Bagley, and members of the Health and Welfare Committee:

The undersigned medical specialty societies, comprising physicians who utilize and/or perform interventional spine procedures to accurately diagnose and treat patients suffering from spine pathologies, are writing to express serious concerns regarding proposed House Bill 941 which seeks to establish restrictions on the physician specialties that can perform specific spine procedures.

Our societies have an established track record demonstrating commitment to research, education, and tracking patient outcomes to promote the safest and most effective patient care. While we certainly support any efforts to ensure that patients receive quality care from qualified physicians, this bill is extremely problematic in its attempt to use legislation to outline which physicians are appropriately trained to perform specific procedures. Our societies stand firmly against state legislatures making such decisions.

Physicians, including anesthesiologists, physiatrists, radiologists, and neurologists, with extensive experience performing image-guided spine procedures, are effectively and safely performing minimally invasive procedures worldwide.

American Academy of Pain Medicine

American Academy of Physical Medicine and Rehabilitation

American College of Radiology

American Society of Anesthesiologists

American Society of Neuroradiology

American Society of Spine Radiology

Society of Interventional Radiology

Spine Intervention Society

Education and Training

Education and Training

- 2-year fellowship?
- *Increase* advanced procedure requirements?
- New sub-specialty track all together?
- Professional Society guidelines?

Professional Societies

Professional Societies

More MPW collaboration?

More multi-society guidelines?

SPECIAL ARTICLES

Safeguards to Prevent Neurologic Complications after Epidural Steroid Injections

Consensus Opinions from a Multidisciplinary Working Group and National Organizations

James P. Rathmell, M.D., Honorio T. Benzon, M.D., Paul Dreyfuss, M.D., Marc Huntoon, M.D., Mark Wallace, M.D., Ray Baker, M.D., K. Daniel Riew, M.D., Richard W. Rosenquist, M.D., Charles Aprill, M.D., Natalia S. Rost, M.D., M.P.H., Asokumar Buvanendran, M.D., D. Scott Kreiner, M.D., Nikolai Bogduk, M.D., Ph.D., D.Sc., Daryl R. Fourney, M.D., Eduardo Fraifeld, M.D., Scott Horn, D.O., Jeffrey Stone, M.D., Kevin Vorenkamp, M.D., Gregory Lawler, M.D., Jeffrey Summers, M.D., David Kloth, M.D., David O'Brien, Jr., M.D., Sean Tutton, M.D.

Multi-society training and educational initiatives?

Too many societies = fragmenting of influence... must develop synergies and collaborate

The Future of Interventional Pain Medicine

- Context -> HHS, CDC, CMS Policy
- Emerging Science and Care Paradigms
 - Discovertebral Pain Paradigm
 - New Indications/Applications for Neuromodulation
 - Peripheral Joint Denervation
 - Regenerative Medicine and Orthobiologics
 - Minimally Invasive Pain Surgery
- Education and Training -> longer and/or more formal training? Accountability
- Professional Societies -> Need collaboration and synergy

Thank you!

Zachary L. McCormick, MD

Vice Chair and Associate Professor, PM&R

Chief, Division of Spine and Musculoskeletal Medicine

Founding Director, Clinical Spine Research Program

Founding Director, Interventional Spine Fellowship

University of Utah School of Medicine

Zachary.McCormick@hsc.Utah.edu @ZackMcCormickMD