

Electromyography and Nerve Conduction Studies. Basic Understanding and Applications for the Ordering Provider

Drew Trainor, DO MS

CPS Annual Meeting 2019

Disclosures

• None

PRESENTATION OVERVIEW

Definition

Indications and NCS and EMG

Basic nerve and muscle anatomy and physiology

Components of the NCS and EMG evaluation

Clinical application of NCS and EMG

Basic interpretation of the NCS and EMG report

DEFINITION

EMG

• Study of muscle function through analysis of electrical activity both with the muscle at rest and during activation

NCS

Study of motor and sensory nerve function by way of percutaneous electrical stimulation

Invented in the 19th Century

 With more sophisticated equipment is has been consistently used over the last 40+ years to diagnose muscle and nerve related disorders

INDICATIONS FOR NCS AND EMG

Evaluation of the nature of the pathophysiology of neurologic/muscular deficit

Quantification of the severity of involvement

Determine acuity/chronicity of injury

Detection of the level of a neurologic deficit

Determine prognosis

BASIC ANATOMY AND PHYSIOLOGY

AXON AND MYELIN

BASIC ANATOMY AND PHYSIOLOGY

Copyright @ 2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

MOTOR UNIT

Definition: Alpha Motor Unit and all the Skeletal Muscle Fibers it Innervates

Size Varies by Muscle

Muscle	Number of Motor Axons	Number of Muscle Fibers	Innervation Ratio	Reference
Biceps	774	580,000	750	Buchtal, 1961
Brachioradialis	315	129,000	410	Feinstein et al
First dorsal interosseous	119	40,500	340	Feinstein et al
Medial gastrocnemius	579	1,120,000	1,934	Feinstein et al
Tibialis anterior	445	250,200	562	Feinstein et al

BASIC ANATOMY AND PHYSIOLOGY

Muscle \rightarrow Peripheral Nerve \rightarrow Plexus \rightarrow Root(s) \rightarrow Cord \rightarrow Brain

COMPONENTS OF THE NCS AND EMG STUDY

Sensory nerve conduction studies

Motor nerve conduction studies

F-waves

H-reflexes

Needle electromyography (EMG)

NERVE CONDUCTION STUDIES

SENSORY NERVE ACTION POTENTIAL (SNAP)

- Onset and Peak
 Latency
- Conduction Velocity
- Amplitude

SENSORY NERVE CONDUCTION STUDIES THE SENSORY NERVE ACTION POTENTIAL (SNAP)

Typical nerves examined:

Sural, ulnar, median, occasionally radial or superficial peroneal

MOTOR NERVE CONDUCTION STUDIES THE MOTOR NERVE ACTION POTENTIAL (CMAP)

- Distal Latency
- Amplitude
- Proximal conduction velocity

MOTOR NERVE CONDUCTION STUDIES THE MOTOR NERVE ACTION POTENTIAL (CMAP)

Typical nerves examined: • ulnar, median, peroneal, tibial

F-WAVES AND H-REFLEX

Useful for identifying proximal segmental demyelination H-reflex •Essentially a recording of the

calcaneal reflex

NEEDLE ELECTROMYOGRAPHY (EMG)

NEEDLE ELECTROMYOGRAPHY (EMG) TECHNIQUE

Small needle inserted into muscle (27 gauge)

Different muscles are sampled based on clinical question and findings during the exam

Root screen

- Lower limb: medial gastroc, anterior tib, vastus medialis, TFL, Glut Max, Lumbar Paraspinals
- Upper limb: FDI, APB, Pronator Teres, Biceps, Triceps, Deltoid, Cervical Paraspinals

Discomfort is usually minimal

NEEDLE ELECTROMYOGRAPHY (EMG) COMPONENTS

Insertional Activity (muscle is quiet)

- Increased
- Sharp waves
- Fibrillation Potentials

NEEDLE ELECTROMYOGRAPHY (EMG) COMPONENTS

Have patient activate the muscle

Motor Unit Evaluation

- Morphology
 - Complexity
 - Amplitude
 - Duration
- Recruitment
 - Normal
 - Reduced
 - Rapid

Figure 44-8

Single voluntary motor unit potentials. A. Normal. B. Prolonged polyphasic potential seen with reinnervation. C. "Giant unit"—normally shaped but of much greater amplitude than normal. D. Brief, low-amplitude "myopathic" units. Calibrations: 5 ms (horizontal) and 1 mV in A and B; 5 mV in C; 100 μ V in D (vertical).

WHEN TO ORDER AND EMG/NCS

Radiculopathy

Mononeuropathy

Plexopathy (Brachial or Lumbosacral)

Peripheral Neuropathy

Myopathy

Neuromuscular junction disorder

Anterior Horn Cell Disease

Cranial neuropathies

WHEN <u>NOT</u> TO ORDER AN EMG/NCS

Suspected Central Nervous System Disorder

- Stroke
- TIA
- Encephalopathy
- Spinal cord injury
- Multiple Sclerosis

Diffuse Body Pain

• Fibromyalgia, etc..

Joint Pain

Unexplained weakness

GOALS OF EMG/NCS

Localization of injury

 Nerve conduction studies are more precise than needle examination

COMMON PERONEAL NERVE

GOALS OF EMG/NCS

Differentiating acute vs. chronic injuries

 Needle examination more helpful for this

Insertional activity

- Increased insertional activity
- Sharp Waves
- Fibrillation Potentials

Activation

- Reduced recruitment
- Polyphasic motor unit potentials
- Giant Motor Unit Potentials

GOALS OF EMG/NCS

Prognosticating Outcome

Monitoring progression of disease

LIMITATIONS OF EMG/NCS

Cannot detect central nervous system disease

Does not test the small fibers

While it is highly specific, especially in cases of radiculopathy, it is not 100% sensitive

• Unable to determine exact sensitivity because there is no gold standard to compare it against

May not be able to detect exact level of pathology

Reasons to follow

Examiner expertise

LIMITATIONS OF EMG/NCS CONTINUED

Explanation for reduced sensitivity in radiculopathy

- Pure sensory radiculopathy
- Subtotal nerve root involvement

DIFFICULTY DETECTING THE LEVEL OF INVOLVEMENT

Imprecision of the myotomal maps

Difficulty with precision of upper lumbar radiculopathies

Difficulty with precision of lower lumbar radiculopathies

 Multiple roots involved depending on location of disc pathology

EXAMINER EXPERTISE

- 6 cases of lumbar radiculopathy
- 46.9% agreement on diagnosis
- Compared residents and faculty
 - Faculty twice as likely to agree on the diagnosis

NOTE

RADICULOPATHY

- NEUROGENIC CHANGE OCCURS FIRST IN THE PROXIMAL MUSCLES
- PARASPINALS ARE NOT RELIABLE IN THE SETTING OF SURGICAL INTERVENTION (POSTERIOR APPROACHES)

PEARLS FOR THE ORDERING PRACTITIONER

EMG/NCS is a diagnostic tool that can aide in the diagnosis of nerve and muscle disorders

 Should be used in addition to, and not in lieu of a solid physical exam, imaging (if indicated), and other necessary workup.

Before ordering an EMG/NCS it is best to have a specific question that needs to be answered based on the differential diagnosis

• ie. Peroneal neuropathy vs. L5 radiculopathy, peripheral neuropathy, CTS vs. C6 radiculopathy, etc....

EMG/NCS performed within three weeks of the injury may be normal, even if there is true pathology (Wallerian degeneration).

WHAT SHOULD YOU EXPECT FROM THE PROVIDER PERFORMING THE STUDY

Include Raw Data in Faxed Report

- Are temperatures documented?
- Were F-waves performed?
- Was it a complete Study?

Actual Report

Findings

Interpretation

		11/16/01		4/8/03 (PO 10 m)		Normal	
		L/NCV*	Amp **	L/NCV*	Amp**	L/NCV *	Amp**
Sensory n	nerve conduction						
Media		46.4	27.0	46.4	31.0	41.3	10
Ulnar		44.0	18.0	44.2	19.8	39-3	10
Medial ABC		NP***		48.1	3.3	41.7	10
Mixed ne	rve conduction						
Median: Wrist-elbow		55.6	64.0	54-5	51.0	49-4	10
	Elbow-axilla	58.1	89.0	57-7	64.0	53-4	10
Ulnar:	Wrist-elbow	61.0	18.0	53-4	40.0	47-5	10
	Elbow-axilla	69.0	56.0	52.4	42.6	48.1	10
Motor ne	erve conduction						
Median: Terminal latency		2.9	6.6	2.9	11.8	3.6	5
	Elbow-wrist	60.0	6.4	54.1	11.3	50.0	5
	Axilla-elbow	56.3	5.6	54.2	11.2	56.0	5
	F-wave	32.3		29.8		29.7	
Ulnar:	Terminal latency	3.0	5.0	3.3	4.6	2.5	5
	Elbow-wrist	58.9	4-5	51.4	4.0	50.6	5
	Axilla-elbow	81.0	4-5	52.4	3.7	52.3	5
	F-wave	36.3		34.2		30.3	

*LNCV, Latency (msec)/ NCV (m/s); **Amplitude of compound nerve action potential (µV) for sensory and mixed nerve conduction and amplitude of compound muscle action potential (mV) for motor nerve conduction; ***Normal side: 52.2 m/s in NCV and 12 µV in amplitude. PO, post-operative; ABC, antebrachial cutaneous; NP, no potential. Bold numbers represent abnormal values.

THANK YOU

QUESTIONS